El agujero negro se encuentra a 55 millones de años luz de nuestro planeta y fue fotografiado por un proyecto internacional que combinó el poder de una red que cuenta con ocho radiotelescopios alrededor del mundo.
El nombre de la iniciativa es Telescopio del Horizonte de Sucesos, Event Horizon Telescope o EHT por sus siglas en inglés, una colaboración en la que participan cerca de 200 científicos.
El EHT buscaba fotografiar la silueta circular opaca que un agujero negro proyecta sobre un fondo más brillante.
El borde de esa sombra es el llamado horizonte de sucesos, el punto de no retorno más allá del cual la gravedad es tan extrema que incluso la luz no puede escapar.
El profesor Heino Falcke, de la Universidad Radboud en Holanda, quien propuso originalmente el experimento, dijo a la BBC que el agujero negro se encuentra en el corazón de la galaxia M87 en la constelación de Virgo.Derechos de autor de la imagenDR JEAN LORRE/SCIENCE PHOTO LIBRARYImage captionLos astrónomos sospechaban que había un agujero supermasivo en la galaxia M87 debido a imágenes como ésta. El centro oscuro no muestra un agujero negro sino una densidad alta de estrellas en rápido movimiento.
"Lo que vemos en la imagen es más grande que todo nuestro Sistema Solar", afirmó Falcke.
"Tiene una masa que equivale a 6.500 millones de veces la masa del Sol. Y creemos que es uno de los agujeros negros más pesados que existen".
"Es un absoluto monstruo, el campeón de peso pesado de los agujeros negros del Universo".
La imagen del agujero negro muestra un "anillo de fuego" intensamente brillante, según explicó Falcke.
El anillo rodea un agujero oscuro perfectamente circular. La parte brillante de la foto corresponde a gases supercalentados que están cayendo en el agujero negro.
El agujero negro masivo de la galaxia Messier 87 se encuentra a 500 trillones de km.
Esa luz es más brillante que la de todos los miles de millones de otras estrellas de la galaxia combinadas, y por eso es posible captarla desde la Tierra.
El círculo es el punto en el que la luz ingresa al agujero negro, que es un objeto con una atracción gravitacional tan potente que ni siquiera la luz puede escapar de él.
Qué es un agujero negro
Es una región del espacio de cuya atracción gravitacional nada, ni siquiera la luz, puede escapar
A pesar de su nombre, los agujeros negros no están vacíos sino que consisten en enormes cantidades de materia concentrada tan densamente en un área pequeña que nada puede escapar de su campo gravitacional
A pesar de su nombre, los agujeros negros no están vacíos sino que consisten en enormes cantidades de materia concentrada tan densamente en un área pequeña que nada puede escapar de su campo gravitacional
Hay un umbral alrededor del agujero negro llamado horizonte de sucesos. Es el punto de no retorno, más allá del cual es imposible escapar de los efectos gravitacionales del agujero negro.
La imagen coincide con lo imaginado tanto por físicos teóricos como por directores de cine de Hollywood, de acuerdo a Ziri Younsi, investigador de University College London, quien es parte del proyecto EHT.
"Si bien son objetos relativamente simples, los agujeros negros plantean algunos de los interrogantes más complejos sobre la naturaleza del espacio, del tiempo, y por último, de nuestra existencia".
"Es extraordinario que la imagen que observamos sea tan similar a la que predecían nuestros cálculos teóricos. Así que según parece, un vez más Einstein tenía razón".
Tener la primera fotografía real de un agujero negro permitirá a los investigadores aprender más sobre estos objetos misteriosos.
La imagen coincide con lo imaginado tanto por físicos teóricos como por directores de cine de Hollywood, de acuerdo a Ziri Younsi, investigador de University College London, quien es parte del proyecto EHT.
"Si bien son objetos relativamente simples, los agujeros negros plantean algunos de los interrogantes más complejos sobre la naturaleza del espacio, del tiempo, y por último, de nuestra existencia".
"Es extraordinario que la imagen que observamos sea tan similar a la que predecían nuestros cálculos teóricos. Así que según parece, un vez más Einstein tenía razón".
Tener la primera fotografía real de un agujero negro permitirá a los investigadores aprender más sobre estos objetos misteriosos.
ALMA, la red de radiotelescopios de Atacama, Chile, participó en la iniciativa.
Falcke tuvo la idea de combinar telescopios para obtener una imagen de un agujero negro cuando era estudiante de doctorado en 1993.
En esa época nadie pensaba que era algo posible. Pero Falcke fue el primero en percibir que se generaría una cierta emisión de radio cerca de y en torno al agujero negro, y que esa emisión sería lo suficientemente poderosa como para ser detectada por telescopios en la Tierra.
Falcke también recuerda haber leído un estudio científico de 1973, según el cual los agujeros negros aparecían 2,5 veces más grandes que su tamaño real debido a su enorme gravedad.
Estos dos factores hicieron que lo que se consideraba imposible de pronto pareciera posible.
El profesor promovió su idea durante dos décadas hasta que finalmente logró convencer al Consejo de Investigaciones Europeo que aportó los recursos financieros para el inicio del proyecto.
La Fundación Nacional de Ciencia de Estados Unidos y agencias en el este de Asia se sumaron luego con sus propios fondos a la iniciativa, que requirió más de US$50 millones.
Falcke tuvo la idea de combinar telescopios para obtener una imagen de un agujero negro cuando era estudiante de doctorado en 1993.
En esa época nadie pensaba que era algo posible. Pero Falcke fue el primero en percibir que se generaría una cierta emisión de radio cerca de y en torno al agujero negro, y que esa emisión sería lo suficientemente poderosa como para ser detectada por telescopios en la Tierra.
Falcke también recuerda haber leído un estudio científico de 1973, según el cual los agujeros negros aparecían 2,5 veces más grandes que su tamaño real debido a su enorme gravedad.
Estos dos factores hicieron que lo que se consideraba imposible de pronto pareciera posible.
El profesor promovió su idea durante dos décadas hasta que finalmente logró convencer al Consejo de Investigaciones Europeo que aportó los recursos financieros para el inicio del proyecto.
La Fundación Nacional de Ciencia de Estados Unidos y agencias en el este de Asia se sumaron luego con sus propios fondos a la iniciativa, que requirió más de US$50 millones.
Derechos de autor de la imagenKATIE BOUMANImage captionLos datos obtenidos por los radiotelescopios son tan copiosos que no pueden enviarse por internet. Cientos de discos duros con información fueron transportados por avión a centros de procesamiento en Boston y Bonn.
La inversión ha sido justificada ahora con la publicación de la imagen. Falcke siente que "la misión está cumplida".
"Ha sido una larga travesía, pero esto es lo que quería ver con mis propios ojos. Quería saber que era algo real", señaló.
Ningún telescopio es lo suficientemente potente como para captar la imagen de un agujero negro.
Por ello se requirió una red de ocho observatorios combinados, en la iniciativa EHT, que puede visualizarse como un gran telescopio virtual del tamaño del planeta.
El director del EHT es el profesor Sheperd Doeleman, del Centro de Astrofísica Harvard Smithsonian, un proyecto conjunto de la Universidad de Harvard y del Instituto Smithsoniano.El Telescopio del Polo Sur fue uno de los ocho observatorios que formaron una red para captar la imagen.
Los telescopios que intengran el EHT se encuentran en volcanes en Hawái y México, montañas en Arizona y en la Sierra Nevada en España, en el Desierto de Atacama en Chile y en la Antártica.
Un equipo de cerca de 200 científicos apuntó los telescopios de la red hacia M87 y registró datos desde el corazón de la galaxia durante más de 10 días.
La información que obtuvieron fue demasiado copiosa como para ser enviada por internet.
Los datos fueron almacenados en cientos de discos duros que fueron transportados por avión a centros de procesamiento en Boston y Bonn que sintetizaron la información.
Doeleman describe esta operación como "una extraordinaria hazaña científica".
"Hemos logrado algo que hace una generación se consideraba imposible", señaló el director del proyecto EHT.
"Avances en tecnología, conexiones entre los mejores radio observatorios y algoritmos innovadores se combinaron para abrir una ventana completamente nueva a los agujeros negros".
El mismo equipo también busca obtener una foto de Sagitario A* o Sgr A*, el agujero negro masivo en el centro de nuestra propia galaxia, la Vía Láctea.
Aunque parezca extraño, es más difícil lograr una imagen de Sagitario A* que de un agujero negro en una galaxia distante.
Y eso se debe a que, por razones aún desconocidas, el anillo de fuego en torno al agujero negro de la Vía Láctea es más pequeño y menos brillante.
La inversión ha sido justificada ahora con la publicación de la imagen. Falcke siente que "la misión está cumplida".
"Ha sido una larga travesía, pero esto es lo que quería ver con mis propios ojos. Quería saber que era algo real", señaló.
Ningún telescopio es lo suficientemente potente como para captar la imagen de un agujero negro.
Por ello se requirió una red de ocho observatorios combinados, en la iniciativa EHT, que puede visualizarse como un gran telescopio virtual del tamaño del planeta.
El director del EHT es el profesor Sheperd Doeleman, del Centro de Astrofísica Harvard Smithsonian, un proyecto conjunto de la Universidad de Harvard y del Instituto Smithsoniano.El Telescopio del Polo Sur fue uno de los ocho observatorios que formaron una red para captar la imagen.
Los telescopios que intengran el EHT se encuentran en volcanes en Hawái y México, montañas en Arizona y en la Sierra Nevada en España, en el Desierto de Atacama en Chile y en la Antártica.
Un equipo de cerca de 200 científicos apuntó los telescopios de la red hacia M87 y registró datos desde el corazón de la galaxia durante más de 10 días.
La información que obtuvieron fue demasiado copiosa como para ser enviada por internet.
Los datos fueron almacenados en cientos de discos duros que fueron transportados por avión a centros de procesamiento en Boston y Bonn que sintetizaron la información.
Doeleman describe esta operación como "una extraordinaria hazaña científica".
"Hemos logrado algo que hace una generación se consideraba imposible", señaló el director del proyecto EHT.
"Avances en tecnología, conexiones entre los mejores radio observatorios y algoritmos innovadores se combinaron para abrir una ventana completamente nueva a los agujeros negros".
El mismo equipo también busca obtener una foto de Sagitario A* o Sgr A*, el agujero negro masivo en el centro de nuestra propia galaxia, la Vía Láctea.
Aunque parezca extraño, es más difícil lograr una imagen de Sagitario A* que de un agujero negro en una galaxia distante.
Y eso se debe a que, por razones aún desconocidas, el anillo de fuego en torno al agujero negro de la Vía Láctea es más pequeño y menos brillante.
¿Qué hay en un agujero negro? ¿Podríamos meternos en una nave espacial en uno de ellos? Preguntó recientemente Jorge Luis Álvarez desde México cuando invitamos a los lectores de BBC Mundo a enviar sus dudas científicas.
Nos llovieron preguntas de todas partes de Latinoamérica (¡gracias!).
La matemática Hannah Fry y el genetista Adam Rutherford planean contestar varias en su programa "Los curiosos casos de Rutherford y Fry", escogieron empezar con ésta.
"¡Suena divertido!", exclamó Fry.
"Nadie sabe mucho sobre los agujeros negros, por eso son tan fantásticos", dijo el cosmólogo Andrew Pontzen, lo que nos desconcertó un poco pues lo habíamos llamado para que contribuyera con sus conocimientos... y desconocimientos, al parecer.
"No sólo no los entendemos bien sino que lo poco que entendemos expone los fenómenos más extraños de la física", agregó.
Manos a la obra
Empecemos por lo más básico: qué es un agujero negro.
"Esencialmente un agujero negro es un montón de materia apeñuscada en un espacio tan pequeño que nada puede salir, ni siquiera la luz", explica Pontzen.
Empecemos por lo más básico: qué es un agujero negro.
"Esencialmente un agujero negro es un montón de materia apeñuscada en un espacio tan pequeño que nada puede salir, ni siquiera la luz", explica Pontzen.
"Imagínate que pudieras empacar en un espacio muchísimo más de lo que pensarías posible, hasta que se vuelva tan denso que tenga su propia fuerza de gravedad".
Y el mejor ingrediente que conocemos para hacer un agujero negro son las estrellas que, al final de sus vidas, sufren un colapso gravitacional y alcanzan un punto de densidad infinita.
Se estima que hay unos 100 millones de agujeros negros en la Vía Láctea.
El problema es que no los podemos ver...
Pero entonces, ¿cómo descubrimos que existían?
La primera persona en concebir la idea fue el reverendo inglés John Michell, geólogo, astrónomo y uno de los grandes científicos olvidados de la historia.
En 1783, propuso la existencia de "estrellas oscuras" -la versión newtoniana del agujero negro- cuyo campo gravitacional era tan grande que ni siquiera la luz podía escapar.
Pero fue sólo gracias a las matemáticas que la presencia de los agujeros negros empezó a ser aceptada.
Mientras servía en el ejército alemán durante la Primera Guerra Mundial, Karl Schwartzchild resolvió las ecuaciones de Albert Einstein y calculó cuán grande tendría que ser la masa para tener una fuerza gravitacional tan fuerte como para impedir que la luz saliera.
No obstante, los astrónomos siguieron considerando la idea de los agujeros negros como "absurda", con muchos rehusándose a aceptar que una estrella muerta podía producir un hoyo invisible pero inmenso en el tejido del espacio y el tiempo.
Además si por su naturaleza eran invisibles, ¿cómo podían estar seguros de que realmente existían?Derechos de autor de la imagen
La primera persona en concebir la idea fue el reverendo inglés John Michell, geólogo, astrónomo y uno de los grandes científicos olvidados de la historia.
En 1783, propuso la existencia de "estrellas oscuras" -la versión newtoniana del agujero negro- cuyo campo gravitacional era tan grande que ni siquiera la luz podía escapar.
Pero fue sólo gracias a las matemáticas que la presencia de los agujeros negros empezó a ser aceptada.
Mientras servía en el ejército alemán durante la Primera Guerra Mundial, Karl Schwartzchild resolvió las ecuaciones de Albert Einstein y calculó cuán grande tendría que ser la masa para tener una fuerza gravitacional tan fuerte como para impedir que la luz saliera.
No obstante, los astrónomos siguieron considerando la idea de los agujeros negros como "absurda", con muchos rehusándose a aceptar que una estrella muerta podía producir un hoyo invisible pero inmenso en el tejido del espacio y el tiempo.
Además si por su naturaleza eran invisibles, ¿cómo podían estar seguros de que realmente existían?Derechos de autor de la imagen
El movimiento de las estrellas
¿Estamos hablando de entidades hipotéticas que se afirma que existen porque las matemáticas y la física confirman que podrían estar ahí?
"Tenemos evidencia creíble de que hay objetos que se comportan exactamente como lo harían los agujeros negros", le aseguró a la BBC la astrofísica Sheila Rowan.
"La observación de la manera en la que las estrellas y el gas se mueven en algunas regiones del espacio nos dice que hay una enorme cantidad de masa apretada en un espacio pequeño con efectos gravitacionales superfuertes", agregó Rowan.
"Es cierto que no los podemos ver pero las recientes observaciones de LIGO (el Observatorio Avanzado de Interferometría Láser de Ondas Gravitacionales) han podido detectar en ondas gravitacionales en el espacio creadas por fusiones de inmensos agujeros negros hace miles de millones de años", añade la experta.Simulaciones numéricas de las ondas gravitatorias emitidas por la fusión de dos agujeros negros.
Ahora sí: si nos montáramos en una nave espacial y nos metiéramos en un agujero negro, ¿qué pasaría?
"Lo primero que sentirías al zambullirte en un agujero negro es que la fuerza de marea es tan poderosa que halan de tu cabeza con más fuerza que la que hala tus pies y te estiras hasta que quedas 'espaguetizado'", dice Pontzen.
"Si tu cuerpo es muy fuerte en teoría podrías sobrevivir ese estiramiento y, suponiendo que lo eres, hay varias teorías sobre lo que encontrarías allá adentro", continúa.
"Una de las posibilidades es 'la pared de fuego' que, como el nombre indica, te encontrarías con una banda de partículas ardientes que te freirían como a una papa".
De no sufrir tan abrasador destino, podrías explorarlo, pero sólo para satisfacer tu propia curiosidad pues -recuerda- puedes entrar, pero nunca salir.
¿Estamos hablando de entidades hipotéticas que se afirma que existen porque las matemáticas y la física confirman que podrían estar ahí?
"Tenemos evidencia creíble de que hay objetos que se comportan exactamente como lo harían los agujeros negros", le aseguró a la BBC la astrofísica Sheila Rowan.
"La observación de la manera en la que las estrellas y el gas se mueven en algunas regiones del espacio nos dice que hay una enorme cantidad de masa apretada en un espacio pequeño con efectos gravitacionales superfuertes", agregó Rowan.
"Es cierto que no los podemos ver pero las recientes observaciones de LIGO (el Observatorio Avanzado de Interferometría Láser de Ondas Gravitacionales) han podido detectar en ondas gravitacionales en el espacio creadas por fusiones de inmensos agujeros negros hace miles de millones de años", añade la experta.Simulaciones numéricas de las ondas gravitatorias emitidas por la fusión de dos agujeros negros.
Ahora sí: si nos montáramos en una nave espacial y nos metiéramos en un agujero negro, ¿qué pasaría?
"Lo primero que sentirías al zambullirte en un agujero negro es que la fuerza de marea es tan poderosa que halan de tu cabeza con más fuerza que la que hala tus pies y te estiras hasta que quedas 'espaguetizado'", dice Pontzen.
"Si tu cuerpo es muy fuerte en teoría podrías sobrevivir ese estiramiento y, suponiendo que lo eres, hay varias teorías sobre lo que encontrarías allá adentro", continúa.
"Una de las posibilidades es 'la pared de fuego' que, como el nombre indica, te encontrarías con una banda de partículas ardientes que te freirían como a una papa".
De no sufrir tan abrasador destino, podrías explorarlo, pero sólo para satisfacer tu propia curiosidad pues -recuerda- puedes entrar, pero nunca salir.
Los que nos quedamos en Tierra
Quienes no se entusiasmaran con viajar al agujero negro pero se quedaron observando, verían algo completamente distinto.
"Si quienes están en la nave nos dijeran adiós moviendo la mano, veríamos que el movimiento se iría volviendo más y más lento hasta que al llegar al horizonte del evento -la entrada al agujero-, la imagen se congelaría y se volvería menos intensa", explica Sheila Rowan.
"La fuerza gravitacional es tan fuerte que hala hasta la información que está tratando de salir, por eso la imagen se va volviendo más pálida, lenta y pequeña, hasta que se congela".
Y eso es lo precisamente lo que nos dice la Relatividad: el mismo evento visto por observadores desde lugares diferentes puede no verse igual.
Quienes no se entusiasmaran con viajar al agujero negro pero se quedaron observando, verían algo completamente distinto.
"Si quienes están en la nave nos dijeran adiós moviendo la mano, veríamos que el movimiento se iría volviendo más y más lento hasta que al llegar al horizonte del evento -la entrada al agujero-, la imagen se congelaría y se volvería menos intensa", explica Sheila Rowan.
"La fuerza gravitacional es tan fuerte que hala hasta la información que está tratando de salir, por eso la imagen se va volviendo más pálida, lenta y pequeña, hasta que se congela".
Y eso es lo precisamente lo que nos dice la Relatividad: el mismo evento visto por observadores desde lugares diferentes puede no verse igual.
Adentro, sigues explorando, pero constantemente la fuerza te hala hacia el centro del agujero negro.
"Eso -señala Pontzen- se conoce técnicamente como 'singularidad', que es cuando todo lo que ha caído en el agujero se amontona en el núcleo de manera que ese punto es infinitamente pequeño pero también infinitamente denso".
Además, cuando finalmente te conviertas en parte de ese núcleo tan singular, probablemente ya no tendrás la forma de un ser humano, ni siquiera de uno espaguetizado ni frito.
"Y la terrible noticia es que la Física está en serios problemas pues eventualmente, todos nuestros números estallan... sencillamente no sabemos qué pasa cuando llegas al centro de un agujero negro", lamenta el cosmólogo.
"Eso -señala Pontzen- se conoce técnicamente como 'singularidad', que es cuando todo lo que ha caído en el agujero se amontona en el núcleo de manera que ese punto es infinitamente pequeño pero también infinitamente denso".
Además, cuando finalmente te conviertas en parte de ese núcleo tan singular, probablemente ya no tendrás la forma de un ser humano, ni siquiera de uno espaguetizado ni frito.
"Y la terrible noticia es que la Física está en serios problemas pues eventualmente, todos nuestros números estallan... sencillamente no sabemos qué pasa cuando llegas al centro de un agujero negro", lamenta el cosmólogo.
No hay comentarios:
Publicar un comentario